A Quadratic Partition of Primes $\equiv 1 \pmod{7}$

By Kenneth S. Williams*

Abstract. The solutions of a quadratic partition of primes $p \equiv 1 \pmod{7}$, in terms of which the author and P. A. Leonard have given the cyclotomic numbers of order seven and also necessary and sufficient conditions for 2, 3, 5 and 7 to be seventh powers (mod p), are obtained for all such primes < 1000.

Let p be a prime $\equiv 1 \pmod{7}$. P. A. Leonard and the author [4] have given necessary and sufficient conditions for 2, 3, 5 and 7 to be seventh powers (mod p) (see also [1], [6]), in terms of the solutions of the following quadratic partition of p:

(1)
$$72p = 2x_1^2 + 42(x_2^2 + x_3^2 + x_4^2) + 343(x_5^2 + 3x_6^2),$$

(2)
$$12x_2^2 - 12x_4^2 + 147x_5^2 - 441x_6^2 + 56x_1x_6 + 24x_2x_3 - 24x_2x_4 + 48x_3x_4 + 98x_5x_6 = 0,$$

(3)
$$12x_{3}^{2} - 12x_{4}^{2} + 49x_{5}^{2} - 147x_{6}^{2} + 28x_{1}x_{5} + 28x_{1}x_{6} + 48x_{2}x_{3} + 24x_{2}x_{4} + 490x_{5}x_{6} = 0.$$

It was shown in [2], [5] that the system (1)–(3) has exactly eight solutions $(x_1, x_2, x_3, x_4, x_5, x_6)$ with $x_1 \equiv 1 \pmod{7}$. (The negatives of these eight solutions, each satisfying $x_1 \equiv -1 \pmod{7}$, are the only other solutions.) Of the eight solutions with $x_1 \equiv 1 \pmod{7}$, two solutions, namely $(x_1, x_2, x_3, x_4, x_5, x_6) = (-6t, \pm 2u, \pm 2u, \mp 2u, 0, 0)$, where $p = t^2 + 7u^2$, $t \equiv 1 \pmod{7}$, are regarded as trivial. If $(x_1, x_2, x_3, x_4, x_5, x_6)$ is one of the six nontrivial solutions with $x_1 \equiv 1 \pmod{7}$, all six such solutions are given by (*) where $0 \le k \le 5$. In this paper, a nontrivial solution of (1)–(3) with $x_1 \equiv 1 \pmod{7}$ is given for each of the 28 primes p < 1000 with $p \equiv 1 \pmod{7}$ (see Table 2 below). These solutions were computed from a prime factor λ of p in the unique factorization domain $Z[\alpha]$, $\alpha = \exp(2\pi i/7)$, where the values of λ were obtained from an old

Received November 29, 1973.

AMS (MOS) subject classifications (1970). Primary 10B35; Secondary 10B05, 10C05, 10J05.

^{*}This research was supported by a grant (No. A7233) from the National Research Council of Canada. The author's sabbatical leave at the University of British Columbia was also supported by a N.R.C. travel grant (No. T0259).

$$(*) \qquad (x_1, x_2, x_3, x_4, x_5, x_6) \qquad \begin{pmatrix} 1 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 & 0 & 0 \\ 0 & -1 & 0 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & -\frac{1}{2} & \frac{1}{2} \\ 0 & 0 & 0 & 0 & -\frac{3}{2} -\frac{1}{2} \end{pmatrix},$$

table of Kummer [3], as follows: for each λ an associate π of λ was found such that

(4)
$$\pi_1 \pi_4 \pi_5 \equiv -1 \pmod{(1-\alpha)^2},$$

where $\pi_i = \sigma_i(\pi)$ and σ_i is the automorphism of $Q(\alpha)$ defined by $\sigma_i(\alpha) = \alpha^i$ ($1 \le i \le 6$). Then, if

(5)
$$\pi_1 \pi_4 \pi_5 = c_1 \alpha + c_2 \alpha^2 + c_3 \alpha^3 + c_4 \alpha^4 + c_5 \alpha^5 + c_6 \alpha^6,$$

a solution $(x_1, x_2, x_3, x_4, x_5, x_6)$ of (1)-(3) is given by

$$x_{1} = -c_{1} - c_{2} - c_{3} - c_{4} - c_{5} - c_{6} \quad (x_{1} \equiv 1 \pmod{7})),$$

$$x_{2} = c_{1} - c_{6},$$

$$x_{3} = c_{2} - c_{5},$$

$$x_{4} = c_{3} - c_{4},$$

$$7x_{5} = c_{1} + c_{2} - 2c_{3} - 2c_{4} + c_{5} + c_{6},$$

$$7x_{6} = c_{1} - c_{2} - c_{5} + c_{6}.$$

(Alternatively, as $\pi_1 \pi_4 \pi_5$ is a Jacobi sum of order 7, the c_i could have been obtained from tables of Jacobi sums.) The solutions $(x_1, x_2, x_3, x_4, x_5, x_6)$ obtained are listed in Table 2 below and each one was shown directly to satisfy (1)-(3).

In view of the relative inaccessibility of Kummer's paper [3], we list for convenience his values of λ in Table 1.

Two mistakes were noted in Kummer's table. For p = 337, he gives the incorrect value $\lambda = 2 + \alpha - \alpha^2 - \alpha^4$ (which is a factor of 344) and, for p = 617, he gives the incorrect value $\lambda = 2 + \alpha + \alpha^2 - \alpha^5$ (which is a factor of 113). The respective correct values $\lambda = 3 - 4\alpha + 2\alpha^2 - 5\alpha^4 + 4\alpha^5 - 8\alpha^6$ and $\lambda = 5 + 5\alpha - 4\alpha^3 - 3\alpha^4 + 2\alpha^6$ (given below) are taken from a table of Reuschle [7]. (Kummer's table was used rather than Reuschle's, as Kummer's values of λ are in general simpler than those of Reuschle. Two errors were noted in Reuschle's table: the factor of 29 given is incorrect (it is a factor of 1093), and the twelfth prime p listed should be 421 not 431.)

1134

(6)

TABLE 1. Prime factors λ in $Z[\alpha]$ of primes $p \equiv 1 \pmod{7}$, $p \leq 1000$

р	λ	p	λ
29	$1 + \alpha - \alpha^2$	491	$3 + \alpha + \alpha^3 - \alpha^5$
43	$2 + \alpha$	547	$3 + \alpha$
71	$2 + \alpha + \alpha^3$	617	$5+5\alpha-4\alpha^3-3\alpha^4+2\alpha^6$
113	$2-\alpha+\alpha^5$	631	$2+2\alpha-\alpha^2+\alpha^3+\alpha^6$
127	$2-\alpha$	659	$2+2\alpha-\alpha^2+\alpha^5$
197	$3 + \alpha + \alpha^5 + \alpha^6$	673	$4 + 3\alpha + 2\alpha^2 + \alpha^4 + 2\alpha^6$
211	$3 + \alpha + 2\alpha^2$	701	$3 + \alpha + \alpha^4 - \alpha^5 + \alpha^6$
239	$3 + 2\alpha + 2\alpha^2 + \alpha^3$	743	$3+2\alpha-\alpha^3-\alpha^4$
281	$2-\alpha-2\alpha^3$	757	$3+2\alpha+\alpha^3$
337	$3-4\alpha+2\alpha^3-5\alpha^4+4\alpha^5-8\alpha^6$	827	$2+2\alpha-\alpha^4-\alpha^6$
379	$3+2\alpha+\alpha^2$	883	$2-\alpha^2-2\alpha^3-\alpha^5$
421	$3 + \alpha + \alpha^2$	911	$3+2\alpha-\alpha^3+\alpha^4$
449	$2 + \alpha - \alpha^3 - \alpha^6$	953	$3 + \alpha - \alpha^2 - \alpha^3$
463	$3+2\alpha$	967	$2+2\alpha-\alpha^3+2\alpha^5$

TABLE 2. Solutions of (1)-(3)

<i>p</i>	<i>x</i> ₁	<i>x</i> ₂	<i>x</i> ₃	<i>x</i> ₄	<i>x</i> ₅	<i>x</i> ₆
29	1	- 2	- 3	- 2	- 1	1
43	1	- 6	- 1	- 2	- 1	1
71	15	0	3	- 2	- 3	- 1
113	- 27	6	- 4	3	0	- 2
127	29	0	12	- 1	- 2	0
197	- 13	- 6	1	- 8	- 5	1
211	- 55	0	13	- 4	1	- 1
239	57	- 11	0	6	3	- 1
281	57	6	7	12	- 3	- 1
337	- 13	15	- 10	4	- 5	- 1
379	- 13	10	13	- 12	- 5	1
421	- 55	- 4	3	18	- 5	1
449	- 41	0	10	19	- 4	2
463	1	0	9	22	- 1	- 3
491	- 69	6	9	20	3	1
547	43	2	15	0	- 1	5
617	- 55	- 6	- 1	- 16	1	- 5

(continued)

р	<i>x</i> ₁	<i>x</i> ₂	<i>x</i> ₃	<i>x</i> ₄	<i>x</i> ₅	<i>x</i> ₆
631	8	- 6	- 18	14	- 8	0
659	- 27	- 4	- 9	- 30	3	1
673	22	20	8	- 12	- 4	- 4
701	- 125	20	3	- 4	- 1	1
743	- 27	20	12	- 3	- 6	4
757	- 27	14	- 13	4	9	3
827	15	26	3	- 6	- 3	- 5
883	15	- 4	- 13	- 32	3	- 3
911	29	- 6	- 10	- 31	- 2	4
953	50	12	8	- 28	4	4
967	127	15	- 6	20	- 1	3

TABLE 2 (continued)

From Table 2, we see that x_1 is *even* only for p = 631, 673, 953, so that (see [4]) 2 is a seventh power (mod p) for primes $p \equiv 1 \pmod{7}$ less than 1000 only for these primes. Indeed, we can show directly that $2 \equiv 196^7 \pmod{631}$, $2 \equiv 128^7 \pmod{673}$, $2 \equiv 120^7 \pmod{953}$.

Department of Mathematics Carleton University Ottawa, Ontario, Canada

1. H. P. ALDERSON, "On the septimic character of 2 and 3," Proc. Cambridge Philos. Soc., v. 74, 1973, pp. 421-433.

2. L. E. DICKSON, "Cyclotomy and binomial congruences," Trans. Amer. Math. Soc., v. 37, 1935, pp. 363-380.

3. E. KUMMER, "Sur les nombres complexes qui sont formés avec les nombres entiers réels et les racines de l'unité," J. Analyse Math., v. 12, 1847, pp. 185-212.

4. P. A. LEONARD & K. S. WILLIAMS, "The septic character of 2, 3, 5 and 7," Pacific J. Math. (To appear.)

5. P. A. LEONARD & K. S. WILLIAMS, "A diophantine system of Dickson," Atti Accad. Naz. Lincei Rend. Cl. Sci. Fis. Mat. Natur. (To appear.)

6. J. B. MUSKAT, "Criteria for the solvability of certain congruences," *Canad. J. Math.*, v. 16, 1964, pp. 343-352. MR 29 #1170.

7. K. G. REUSCHLE, "Zerfällung aller Primzahlen innerhalb des ersten Tausend in ihre aus siebenten Wurzeln der Einheit gebildeten complexen Primfactoren," *Monatsh. Kl. Preuss. Akad. Wiss. Berlin*, v. 1859, pp. 694–697.