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A Quadratic Partition of Primes -1 (mod 7) 

By Kenneth S. Williams* 

Abstract. The solutions of a quadratic partition of primes p =1 (mod 7), in terms 

of which the author and P. A. Leonard have given the cyclotomic numbers of order 

seven and also necessary and sufficient conditions for 2, 3, 5 and 7 to be seventh 

powers (mod p), are obtained for all such primes < 1000. 

Let p be a prime 1 (mod 7). P. A. Leonard and the author [4] have given 

necessary and sufficient conditions for 2, 3, 5 and 7 to be seventh powers (mod p) 

(see also [1], [6]), in terms of the solutions of the following quadratic partition of p: 

(1) 72p = 2x2 +42(x2 + x2 + x4) + 343(x2 + 3x2), 

12x2 - 12x2 + 147x2 - 44 x2? + 56x x6 + 24x2x3-24x2x4 
(2) 

+ 48x3x4 + 98x5x6 = 0 

12X2 _ 12X2 + 49x2 - 147X2 + 28x x5 + 28X1X6 + 48X2x3 

(3) 
+ 24x2x4 + 24x3x4 + 490x5x6 = 0. 

It was shown in [2], [5] that the system (1)-(3) has exactly eight solutions (x1, x2, X3, 

X4, x5, x6) with xl1 (mod 7). (The negatives of these eight solutions, each satisfy- 

ing xl-- 1 (mod 7), are the only other solutions.) Of the eight solutions with xl11 

(mod 7), two solutions, namely (xl, x2, X3, X4, x5, x6) = (- 6t, ? 2u, ? 2u, + 2u, 0, 0), 

where p = t2 ? 7u2, t 1 (mod 7), are regarded as trivial. If (xl, x2, X3, X4, x5, x6) 
is one of the six nontrivial solutions with xi1 (mod 7), all six such solutions are given 

by (*) where 0 < k < 5. In this paper, a nontrivial solution of (1)-(3) with xl1 (mod 7) 

is given for each of the 28 primes p < 1000 with p 1 (mod 7) (see Table 2 below). 
These solutions were computed from a prime factor X of p in the unique factoriza- 
tion domain Z [a], a = exp(27ri/7), where the values of X were obtained from an old 
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1 0 0 0 0 0Ok 

0 00 1 0 0\ 

1 0-10 0 0 01 
(*) (xl, X29 X3, X4,X5,X6) 1 0 0 1 0 0 

? 

0 00 0 - Y2 2j 

\0 0 0 0 -3/2 -?/2 

table of Kummer [3], as follows: for each X an associate 7r of X was found 
such that 

(4) 17T41r5 I (mod(I - a)2), 

where rir = aj(7r) and ai is the automorphism of Q(a) defined by ai(a) -= 
(1 < i?<6). Then, if 

(5) 1 If47ISc -Ca + c2a2? +c3a + C4a4 + C5a5 +c 6a6, 

a solution (x1, X2 x3, X4, X5, X6) of (1)-(3) is given by 

x1=- c1 - C2 - C3 - C4 - C5 - C6 (x1-- (mod 7)), 

X2 C1 -C6, 

X3 = C2 - C5, 

(6) 
X4 -C3 - C4, 

7x5 C1 ? - 2c3 - 2c4 + Cs + C6 

7x6 C1 - C2-C + C6- 

(Alternatively, as ir1fr47r5 is a Jacobi sum of order 7, the c^ could have been obtained 
from tables of Jacobi sums.) The solutions (X1, X2, X3, X4, X5, X6) obtained are 
listed in Table 2 below and each one was shown directly to satisfy (1)-(3). 

In view of the relative inaccessibility of Kummer's paper [3], we list for con- 
venience his Values of X in Table 1. 

Two mistakes were noted in Kummer's table. For p = 337, he gives the incor- 
rect value X = 2 + a - a 2 - a4 (which is a factor of 344) and, for p = 617, he 
gives the incorrect value X 2 + a + a2 - a5 (which is a factor of 113). The re- 
spective correct values X = 3 - 4a + 2a 2 - 5a4 + 4a5 - 8a6 and X = 5 + Sa - 
4a 3 - 3a4 + 2a6 (given below) are taken from a table of Reuschle [7]. (Kummer's 
table was used rather than Reuschle's, as Kummer's values of X are in general simpler 
than those of Reuschle. Two errors were noted in Reuschle's table: the factor of 29 
given is incorrect (it is a factor of 1093), and the twelfth prime p listed should be 
421 not 431.) 
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TABLE 1. Prime factors X in Z [a] of primes p 1 (mod 7), P < 1000 

P x P X 

29 1 +a-a2 491 3+a+a3-a5 
43 2+ a 547 3+0a 
71 2+a+a3 617 5+5a-4a3-3a4+2a6 

113 2-a+a5 631 2+2a-a2+a3?+a6 
127 2- a 659 2+2a-a2+a5 

197 3 +?a+a5 + a6 673 4+3a +2a2 +?a4 +?2a6 

211 3 + a + 2a 2 701 3 + aa + -4 a 5 + 6 
239 3 + 2a + 2a2 + a3 743 3 + 2a -a3 -a4 
281 2 - a - 2a3 757 3 + 2a + a3 
337 3 - 4a + 23 - 5a4 + 4a5 - 8a6 827 2 + 2a - a4 - a6 
379 3 + 2a + oz2 883 2 - oa2 - 2at3 - a,5 
421 3 + a + a2 911 3 + 2a-a3 + a4 
449 2 +a-a3 -a6 953 3 +a-a2 -a3 
463 3 + 2az 967 2 + 2a - a3 + 20a5 

TABLE 2. Solutions of (1)-(3) 

P x1 X2 X3 X4 X5 X6 

29 1 -2 -3 -2 - 1 1 
43 1 -6 - 1 -2 - 1 1 
71 15 0 3 -2 -3 - 1 

113 -27 6 -4 3 0 -2 
127 29 0 12 - 1 - 2 0 
197 -13 -6 1 -8 -5 1 
211 - 55 0 13 - 4 1 - 1 
239 57 -11 0 6 3 - 1 
281 57 6 7 12 - 3 - 1 
337 - 13 15 - 10 4 - 5 - 1 
379 - 13 10 13 -12 -5 1 
421 -55 -4 3 18 -5 1 
449 -41 0 10 19 -4 2 
463 1 0 9 22 - 1 -3 
491 - 69 6 9 20 3 1 
547 43 2 15 0 - 1 5 
617 - 55 - 6 -1 - 16 1 - 5 

(continued) 
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TABLE 2 (continued) 

p x X2 3 x4 x5 x6 

631 8 - 6 -18 14 -8 0 
659 - 27 - 4 - 9 -30 3 1 
673 22 20 8 - 12 -4 -4 
701 -125 20 3 -4 -1 1 
743 -27 20 12 -3 -6 4 
757 - 27 14 -13 4 9 3 
827 15 26 3 - 6 - 3 -5 
883 15 -4 -13 -32 3 -3 
911 29 -6 -10 -31 -2 4 
953 50 12 8 - 28 4 4 
967 127 15 - 6 20 - 1 3 

From Table 2, we see that xl is even only for p = 631, 673, 953, so that 
(see [4]) 2 is a seventh power (mod p) for primes p 1 (mod 7) less than 1000 
only for these primes. Indeed, we can show directly that 2 -1967 (mod 631), 2-- 
1287 (mod 673), 2 1207 (mod 953). 
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