A Quadratic Partition of Primes $\equiv 1(\bmod 7)$

By Kenneth S. Williams*

Abstract

The solutions of a quadratic partition of primes $p \equiv 1(\bmod 7)$, in terms of which the author and P. A. Leonard have given the cyclotomic numbers of order seven and also necessary and sufficient conditions for $2,3,5$ and 7 to be seventh powers $(\bmod p)$, are obtained for all such primes $<\mathbf{1 0 0 0}$.

Let p be a prime $\equiv 1(\bmod 7)$. P. A. Leonard and the author [4] have given necessary and sufficient conditions for $2,3,5$ and 7 to be seventh powers $(\bmod p)$ (see also [1], [6]), in terms of the solutions of the following quadratic partition of p :

$$
\begin{align*}
& 72 p=2 x_{1}^{2}+42\left(x_{2}^{2}+x_{3}^{2}+x_{4}^{2}\right)+343\left(x_{5}^{2}+3 x_{6}^{2}\right) \tag{1}\\
& 12 x_{2}^{2}-12 x_{4}^{2}+147 x_{5}^{2}-441 x_{6}^{2}+56 x_{1} x_{6}+24 x_{2} x_{3}-24 x_{2} x_{4} \\
&+48 x_{3} x_{4}+98 x_{5} x_{6}=0 \\
& 12 x_{3}^{2}-12 x_{4}^{2}+49 x_{5}^{2}-147 x_{6}^{2}+28 x_{1} x_{5}+28 x_{1} x_{6}+48 x_{2} x_{3} \\
&+ 24 x_{2} x_{4}+24 x_{3} x_{4}+490 x_{5} x_{6}=0 \tag{3}
\end{align*}
$$

It was shown in [2], [5] that the system (1)-(3) has exactly eight solutions $\left(x_{1}, x_{2}, x_{3}\right.$, $\left.x_{4}, x_{5}, x_{6}\right)$ with $x_{1} \equiv 1(\bmod 7)$. (The negatives of these eight solutions, each satisfying $x_{1} \equiv-1(\bmod 7)$, are the only other solutions.) Of the eight solutions with $x_{1} \equiv 1$ $(\bmod 7)$, two solutions, namely $\left(x_{1}, x_{2}, x_{3}, x_{4}, x_{5}, x_{6}\right)=(-6 t, \pm 2 u, \pm 2 u, \mp 2 u, 0,0)$, where $p=t^{2}+7 u^{2}, t \equiv 1(\bmod 7)$, are regarded as trivial. If $\left(x_{1}, x_{2}, x_{3}, x_{4}, x_{5}, x_{6}\right)$ is one of the six nontrivial solutions with $x_{1} \equiv 1(\bmod 7)$, all six such solutions are given by ($*$) where $0 \leqslant k \leqslant 5$. In this paper, a nontrivial solution of (1)-(3) with $x_{1} \equiv 1(\bmod 7)$ is given for each of the 28 primes $p<1000$ with $p \equiv 1(\bmod 7)$ (see Table 2 below). These solutions were computed from a prime factor λ of p in the unique factorization domain $Z[\alpha], \alpha=\exp (2 \pi i / 7)$, where the values of λ were obtained from an old

[^0](*)
\[

\left(x_{1}, x_{2}, x_{3}, x_{4}, x_{5}, x_{6}\right) \quad\left($$
\begin{array}{rrrrrr}
1 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 1 & 0 & 0 \\
0 & -1 & 0 & 0 & 0 & 0 \\
0 & 0 & 1 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & -1 / 2 & 1 / 2 \\
0 & 0 & 0 & 0 & -3 / 2 & -1 / 2
\end{array}
$$\right)^{k}
\]

table of Kummer [3], as follows: for each λ an associate π of λ was found such that

$$
\begin{equation*}
\pi_{1} \pi_{4} \pi_{5} \equiv-1 \quad\left(\bmod (1-\alpha)^{2}\right) \tag{4}
\end{equation*}
$$

where $\pi_{i}=\sigma_{i}(\pi)$ and σ_{i} is the automorphism of $Q(\alpha)$ defined by $\sigma_{i}(\alpha)=\alpha^{i}$ $(1 \leqslant i \leqslant 6)$. Then, if

$$
\begin{equation*}
\pi_{1} \pi_{4} \pi_{5}=c_{1} \alpha+c_{2} \alpha^{2}+c_{3} \alpha^{3}+c_{4} \alpha^{4}+c_{5} \alpha^{5}+c_{6} \alpha^{6} \tag{5}
\end{equation*}
$$

a solution $\left(x_{1}, x_{2}, x_{3}, x_{4}, x_{5}, x_{6}\right)$ of (1)-(3) is given by

$$
\begin{align*}
x_{1} & =-c_{1}-c_{2}-c_{3}-c_{4}-c_{5}-c_{6} \quad\left(x_{1} \equiv 1(\bmod 7)\right) \\
x_{2} & =c_{1}-c_{6} \\
x_{3} & =c_{2}-c_{5} \tag{6}\\
x_{4} & =c_{3}-c_{4} \\
7 x_{5} & =c_{1}+c_{2}-2 c_{3}-2 c_{4}+c_{5}+c_{6} \\
7 x_{6} & =c_{1}-c_{2}-c_{5}+c_{6}
\end{align*}
$$

(Alternatively, as $\pi_{1} \pi_{4} \pi_{5}$ is a Jacobi sum of order 7, the c_{i} could have been obtained from tables of Jacobi sums.) The solutions ($x_{1}, x_{2}, x_{3}, x_{4}, x_{5}, x_{6}$) obtained are listed in Table 2 below and each one was shown directly to satisfy (1)-(3).

In view of the relative inaccessibility of Kummer's paper [3], we list for convenience his values of λ in Table 1.

Two mistakes were noted in Kummer's table. For $p=337$, he gives the incorrect value $\lambda=2+\alpha-\alpha^{2}-\alpha^{4}$ (which is a factor of 344) and, for $p=617$, he gives the incorrect value $\lambda=2+\alpha+\alpha^{2}-\alpha^{5}$ (which is a factor of 113). The respective correct values $\lambda=3-4 \alpha+2 \alpha^{2}-5 \alpha^{4}+4 \alpha^{5}-8 \alpha^{6}$ and $\lambda=5+5 \alpha-$ $4 \alpha^{3}-3 \alpha^{4}+2 \alpha^{6}$ (given below) are taken from a table of Reuschle [7]. (Kummer's table was used rather than Reuschle's, as Kummer's values of λ are in general simpler than those of Reuschle. Two errors were noted in Reuschle's table: the factor of 29 given is incorrect (it is a factor of 1093), and the twelfth prime p listed should be 421 not 431.)

TABLE 1. Prime factors λ in $Z[\alpha]$ of primes $p \equiv 1(\bmod 7), p \leqslant 1000$

p	λ	$p \quad \lambda$
29	$1+\alpha-\alpha^{2}$	$4913+\alpha+\alpha^{3}-\alpha^{5}$
43	$2+\alpha$	$5473+\alpha$
71	$2+\alpha+\alpha^{3}$	$6175+5 \alpha-4 \alpha^{3}-3 \alpha^{4}+2 \alpha^{6}$
113	$2-\alpha+\alpha^{5}$	$6312+2 \alpha-\alpha^{2}+\alpha^{3}+\alpha^{6}$
127	$2-\alpha$	$6592+2 \alpha-\alpha^{2}+\alpha^{5}$
197	$3+\alpha+\alpha^{5}+\alpha^{6}$	$6734+3 \alpha+2 \alpha^{2}+\alpha^{4}+2 \alpha^{6}$
211	$3+\alpha+2 \alpha^{2}$	$7013+\alpha+\alpha^{4}-\alpha^{5}+\alpha^{6}$
239	$3+2 \alpha+2 \alpha^{2}+\alpha^{3}$	$7433+2 \alpha-\alpha^{3}-\alpha^{4}$
281	$2-\alpha-2 \alpha^{3}$	$7573+2 \alpha+\alpha^{3}$
337	$3-4 \alpha+2 \alpha^{3}-5 \alpha^{4}+4 \alpha^{5}-8 \alpha^{6}$	$8272+2 \alpha-\alpha^{4}-\alpha^{6}$
379	$3+2 \alpha+\alpha^{2}$	$8832-\alpha^{2}-2 \alpha^{3}-\alpha^{5}$
421	$3+\alpha+\alpha^{2}$	$9113+2 \alpha-\alpha^{3}+\alpha^{4}$
	$2+\alpha-\alpha^{3}-\alpha^{6}$	$9533+\alpha-\alpha^{2}-\alpha^{3}$
463	$3+2 \alpha$	$9672+2 \alpha-\alpha^{3}+2 \alpha^{5}$

Table 2. Solutions of (1)-(3)

p	x_{1}	x_{2}	x_{3}	x_{4}	x_{5}	x_{6}
29	1	-2	-3	-2	-1	1
43	1	-6	-1	-2	-1	1
71	15	0	3	-2	-3	-1
113	-27	6	-4	3	0	-2
127	29	0	12	-1	-2	0
197	-13	-6	1	-8	-5	1
211	-55	0	13	-4	1	-1
239	57	-11	0	6	3	-1
281	57	6	7	12	-3	-1
337	-13	15	-10	4	-5	-1
379	-13	10	13	-12	-5	1
421	-55	-4	3	18	-5	1
449	-41	0	10	19	-4	2
463	1	0	9	22	-1	-3
491	-69	6	9	20	3	1
547	43	2	15	0	-1	5
617	-55	-6	-1	-16	1	-5

(continued)

Table 2 (continued)

p	x_{1}	x_{2}	$x_{\mathbf{3}}$	x_{4}	x_{5}	x_{6}
631	8	-6	-18	14	-8	0
659	-27	-4	-9	-30	3	1
673	22	20	8	-12	-4	-4
701	-125	20	3	-4	-1	1
743	-27	20	12	-3	-6	4
757	-27	14	-13	4	9	3
827	15	26	3	-6	-3	-5
883	15	-4	-13	-32	3	-3
911	29	-6	-10	-31	-2	4
953	50	12	8	-28	4	4
967	127	15	-6	20	-1	3

From Table 2, we see that x_{1} is even only for $p=631,673$, 953 , so that (see [4]) 2 is a seventh power $(\bmod p)$ for primes $p \equiv 1(\bmod 7)$ less than 1000 only for these primes. Indeed, we can show directly that $2 \equiv 196^{7}(\bmod 631), 2 \equiv$ $128^{7}(\bmod 673), 2 \equiv 120^{7}(\bmod 953)$.

Department of Mathematics

Carleton University
Ottawa, Ontario, Canada

1. H. P. ALDERSON, "On the septimic character of 2 and 3," Proc. Cambridge Philos. Soc., v. 74, 1973, pp. 421-433.
2. L. E. DICKSON, "Cyclotomy and binomial congruences," Trans. Amer. Math. Soc., v. 37, 1935, pp. 363-380.
3. E. KUMMER, "Sur les nombres complexes qui sont formés avec les nombres entiers réels et les racines de l'unité,' J. Analyse Math., v. 12, 1847, pp. 185-2 12.
4. P. A. LEONARD \& K. S. WILLIAMS, "The septic character of 2, 3, 5 and 7," Pacific J. Math. (To appear.)
5. P. A. LEONARD \& K. S. WILLIAMS, "A diophantine system of Dickson," Atti Accad. Naz. Lincei Rend. Cl. Sci. Fis. Mat. Natur. (To appear.)
6. J. B. MUSKAT, "Criteria for the solvability of certain congruences," Canad. J. Math., v. 16, 1964, pp. 343-352. MR 29 \#1170.
7. K. G. REUSCHLE, "Zerfällung aller Primzahlen innerhalb des ersten Tausend in ihre aus siebenten Wurzeln der Einheit gebildeten complexen Primfactoren," Monatsh. Kl. Preuss. Akad. Wiss. Berlin, v. 1859, pp. 694-697.

[^0]: Received November 29, 1973.
 AMS (MOS) subject classifications (1970). Primary 10 B 35 ; Secondary $10 \mathrm{B05}, 10 \mathrm{C05}, 10 \mathrm{~J} 05$.

 * This research was supported by a grant (No. A7233) from the National Research Council of Canada. The author's sabbatical leave at the University of British Columbia was also supported by a N.R.C. travel grant (No. T0259).

